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Abstract. Recently fractional calculus (FC) has encountered much success in the description 
of complex dynamics. In particular FC has proved to be a valuable tool to handle viscoelastic 
aspects. In this paper we construct fractional rheological constitutive equations on the basis 
of well known mechanical models, especially the Maxwell, the Kelvin-Voigt, the Zener and 
the Poynting-Thomson model. To this end we introduce a fractional element, in addition to 
the stmdxd purely elastic and purely viscous elements. As we proceed to show, many of the 
fractional differential equations which we obtain by this conswction method admit closed form, 
analytical solutions in term of Fox H-functions of the MiUag-Leffler type. 

1. Introduction 

Relaxation processes deviating from the classical exponential (Debye) behaviour are often 
encountered in the dynamics of complex materials. In many cases experimentally observed 
relaxation functions exhibit a stretched exponential (Kohlrausch-Williams-Watts) decay 
[I321 

@(I) cx exp(-(r/r>) (1) 

O(t) cx ( t / t ) - P  (2) 

with 0 c CY c 1, or a scaling decay 

with 0 c p c 1. Here we consider the algebraic pattern (2) which is observed in the 
stress relaxation of viscoelastic materials, such as polymers [3-51 or critical gels [MI, 
in the charge carrier transport in amorphous semiconductors [9, IO], in the behaviour of 
electrical currents at rough blocking electrodes [I l l ,  in dielectric relaxation [12,13] and in 
the attenuation of seismic waves [14]. 

Even more complex behaviours are exhibited in  crossover situations, typified by changes 
from one form of power-law decay to another. Examples can be found in the dynamics 
of polymers [U] and of networks [&SI and in transient photoconductivity [9, IO]. Such 
crossover forms may be due to the finite'extensions of the underlying systems, i.e. here to 
the restricted motion of polymer segments, to the fact that pre- and post-gel networks are 
self-similar only in restricted ranges and to the fact that photoconductive carriers move in 
a medium of finite thickness. 

0305-4470/95/W6567+18s19.50 0 1995 IOP Publishing Ltd 6561 
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An appropriate tool to describe phenomenologically this richness of dynamical features 
is fractional calculus (Fc) to which a lot of theoretical work is devoted [8,16-241. FC 
was incorporated into standard constitutive equations in a variety of works, mainly in 
the field of viscoelasticity [3-5, 16-18]. Current models of viscoelasticity involving FC 
are based on the formal replacement in  ordinary rheological constitutive equations (RCE) 
of first-order derivatives (d/dr) by fractional derivatives (da/dtB) of non-integer order 
(0 < ,9 < 1). However, this formal procedure cannot assure a priori that the resulting 
expressions are always physically reasonable; this aspect was pointed out for instance in 
references [3,16,19,201. 

It is therefore indispensable to have at hand a consistent procedure that automatically 
guarantees mechanical and thermodynamical stability. Beginning from commonly used 
representations of viscoelastic behaviour through mechanical models, we present here an 
approach which guarantees that the FC equations which follow are physically meaningful. 
To this end we introduce mechanical models, which in addition to purely elastic and viscous 
components also include fractional elements; the dynamical properties of such elements are 
intermediate between purely solid and purely liquid features. 

We begin in the next section with a brief discussion of the way in which, as a result 
of the superposition principle, FC comes into play in systems governed by scaling decays. 
In section 3 we generalize well known prototypes of viscoelasticity (the Maxwell, the 
Kelvin-Voigt, the Zener and the Poynting-Thomson model) and we show that they lead to 
exactly solvable fractional expressions. For these we present the solutions in terms of Fox 
H-functions. 

2. Fractional calculus: a mimicry of memory 

Non-Debye relaxation implies memory. In the formal context memory can be incorporated 
through a causal convolution [25,26]: 

de(t') 
dt' ' 

dt'G(C - t')- (3) 

The (Boltzmann) superposition integral, equation (3). holds for linear systems which are 
homogeneous in time; here u(f)  denotes the stress, E @ )  the strain and G(t )  the relaxation 
modulus, i.e. the response of the stress to a shear jump. Consider now a system whose 
stress decays after a shear jump in an algebraic manner, similar to equation (2). Its stress 
relaxation modulus then obeys: 

where E and t are constants and r (x )  is the complete Gamma function. For convenience we 
chose the prefactors in (4) in a way which matches our forthcoming definitions. Combining 
equations (3) and (4) one arrives at 

-The right-hand side of equation ( 5 )  represents a fractional integral (~1). To see this we 
start from Riemann's expressions of a FI [27,28] 
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where y > 0. Equation (6) includes two special FI forms. For c = 0 one resovers 
the Riemann-Liouville FI formulated as a Laplace convolution, whereas for c + -w 
equation (6) corresponds to Weyl's FI. For y a positive integer, equation (6) presents a 
multiple (Cauchy) integral of order - y .  Now the fractional differentiation of order y z 0 
is obtained by first picking an integer n, n > y .  then performing a FI of order y - n, 
followed by an ordinary differentiation of order n, i.e. 

Working within Weyl's FI, i.e. c + -w, we use the shorthand notation dp/drB = 
B D, . 

Using these expressions we can rewrite equation (5) as 

We stop to note that WeyI's formalism foIIows, naturally from the cauSal convolution, 
equation (5). in which the strain fields start in the distant past, so  that c +~--m. On 
the other hand restricting the dynamics to positive times only. i.e. setting U = 6~ 0 
for f < 0 leads to the Riemann-Liouville formalism. This corresponds to an initial-value 
problem, in which the initial values must be specified [3,21]. 

In the following we apply Weyl's Fc and consider arbitrary histones of the system. 
Weyl's FC turns out to be very ,convenient: the composition rule for differentiations &d 
integrations obeys the simple form 

. da dp du+p 
(9) __ = - 

dta  dtp dtu+8 
for arbitrary CY and B [28]. Furthermore. the Fourier integration 

~~ m - 
F { f ( t ) ;  o) = f(o) = dt f ( t )  exp(-iot) (10) s_, . .  

transforms the operation d'/dt" into a simple multiplication [U, 281: 

3. Generalization of viscoelastic models 

Usually phenomenologic viscoelastic models are based on springs and dashpots [ZS, 261, 
see figure 1. The springs obey Hooke's law 

whereas for dashpots Trouton's (or Newton's) law holds: 

In equations (12) and (13) E and 7 denote the spring'constant and the viscosity. Through 
combinations of springs and dashpots one arrives at standard viscoelastic models, such as 
the Maxwell or the Zener model (see later): these models involve a fairly small number of 
single elements [25,26]. The problem here is that the corresponding ordinary differential 
equations have a relatively restricted class of solutions, which is, in general, too limited to 
provide an adequate description for the complex systems discussed in the introduction. 
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Figure 1. Single elements: (a) elastic, (6) viscous and (c) fractional element. 

To overcome this shortcoming one can relate stress and strain through fractional 
equations [3-5,8,16-18], see equation (8). In this way one readily obtains scaling decays. 
In general, Fc allows the interpolation between the purely elastic behaviour of equation (12). 
obtained for ,4 = 0 in equation (8). and the purely viscous pattern of equation (13), obtained 
for p = 1 in equation (8). The interpolating R E ,  equation (8) with 0 < ,3 c: 1, describes 
for instance the behaviour of cross-linking polymers at the gel point (gel equation) [&SI. 

Schiessel and Blumen [8,20], Schiessel et a1 [29] and Heymans and Bauwens [30] 
have demonstrated that the fractional relation, equation (8), can be realized physically 
through hierarchical arrangements of springs and dashpots, such as ladders, trees or fractal 
shuctures. In the limit of an infinite number of constituting elements these arrangements 
obey equation (8). As an example, figure 2 presents such an arrangement; we have used it in 
1201. This hierarchical structure consists of springs (with spring constants Eo, El, E2,  . . .) 
along one of the struts and dashpots (with viscosities qo, 71.  qz.. . .) on the rungs of the 
ladder. By adjusting the constants of the structural parts in a suitable way one can achieve 
for any preassigned ,4 with 0 c ,4 c 1 that the resulting arrangement obeys equation (8) 
[ZO]. Micro- and mesoscopic interpretations of such sequential viscoelastic structures can 
be found in [8,31,321. 

Figum 2. Sequential realization of the frictional element 

We now introduce the term fractional element (FE) to denote such a hierarchical structure 
and we symbolize it by a triangle (cf figure l(c)) which schematically resembles a ladder 
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such as the one drawn in figure 2. Since we do not care for the specific inner details of such 
a hierarchical structure we specify it by the triple (,8, E,  5).  In the models which follow 
ms are fundamental elements, besides the springs and the dashpots. 

In the following we focus on mechanical models with Ws, for which we can provide 
solutions to all the relevant response functions [25,26], i.e. the complex modulus, the 
complex compliance, the relaxation modulus and the creep compliance. In this way we 
have closed form, analytic expressions for several observable quantities based on models 
which contain a limited set of parameters. 

3.1. The single fractional element 

We start with this simple case which sets the pattern for the analysis of the more complex 
models which follow. Fourier transforming equation (8) and using equation (11) results in 
the algebraic relation 

-.?(w) = E(iwr)Q(w) (14) 
from which the complex modulus 

G*(w) = B(w)/6-(w) (15) 
can be directly recovered 

G'(w) = E(iws)@. 

Now the relaxation modulis C(t )  may be obtained either from the storage modulus 
G'(w) = Re G*(w) or from the loss modulus G"(o) = Im G'(w). The relations connecting 
the moduli are [25] 

and 

In equations (17) and (IS), F.' and FG' denote the inverse Fourier sine and cosine 
transformations; the direct transformations are & ( f ( t ) ;  w )  = .s," dtf(t) sinor and 
3 c ( f ( t ) ;  w )  = lowdt f(t)coswt. For a single W one obtains readily from(17) 

Here equation (3.768(1.)) of [33] was used for establishing the second equality on the 
right-hand side. This result reproduces equation (4). 

On the other hand, the complex compliance obeys J"(w) = l /G*(w),  so that here 
J"(w) = E-l(iwr)-P. Again, the storage and loss compliances are given by J'(w) = 
ReJ*(w) and by J"(w) = -ImJ*(w), respectively. These compliances are related to the 
creep compliance J(t) (i.e. the response of the strain to a stress jump ~ ( t )  = @ ( t ) )  through 
[25]: 

Hence we obtain for the FE 
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where we used equation (3.768(2.)) from [331. From equation (21) we obtain J ( t )  by 
integration (using J ( 0 )  = 1/G(O) = 0 [ZS]): 

3.2. The generalized Marwell model 

Figure 3(u) shows the standard Maxwell model in which a spring and a dashpot are arranged 
in series 125,261. We generalize this model by replacing these elements by the FES (or, E , ,  Q) 
and (p,  Ez, rz), see figure 3(6). Because of the sequential construction u( f )  is the same for 
both elements. Their respective stress-strain relations are 

and 

where both expressions follow from the composition rule (9). Due to the construction of 
the generalized Maxwell model, we have ~ ( t )  = q ( t )  + E & ) ,  from which it follows 

In equation (25) we assumed LY ,B  without loss of generality. For LY = ,9 we recover 
basically the RCE of the single FE, as discussed in subsection 3.1. We now take or > p. 
Equation (25) can be simplified by setting r = (E1r:/EZ&l/(U-B) and E = EI(r,/r)OL. 
This leads to 

.. 

which is the RCE of the generalized Maxwell model 116,341. 

Figure 3. The Maxwell element (0) and its fractional generalization (b). 

Fourier transforming equation (26) and using equations (11) and (15) leads to the 
complex modulus 

. .  

In order to calculate the relaxation modulus G(t) we use the loss modulus G"(w) = 
ImG"(w). Hence, from (27): 
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Now following equation (18) and the results of the appendix we find for the Mellin transform 
of G"(o) /o after some tedious calculations 

where equation (2.54) of [35] was used. In equation (29) the Mellin transform M is defined 
by 

f(z) M { f ( x ) ;  z} = CLX f(x)x'-' (30) r 
which is also known as the double-sided Laplace transform [35-371. The relation between 
M{G"(o)/o} and M{G(t)} is given by 

(cf equations (18) and (A2)). From equations (29) and (31) we obtain G(t )  via an inverse 
Mellin wansform (cf (A3)): 

Here we used the connection between the inverse Mellin transform and the definition intigral 
of the Fox H-function [38], see the appendix, equations (A3) and (A4). By further use of the 
properties of the H;function we can rewrite equation (32) in term of Maifland's generalized 
hypergeometric function I Yl(r/r) [38], or as the better known generalized Mittag-Leffler 
function I361 

G ( t )  = E ( { ) p  E,-p,,+ (- (t)"'), (33) 

valid for arbitraq 0 6 ,6 < a! < I. The equivalence between equations (32) and (33) can 
be seen by comparing the power series expansion of the H-function, equation (AlO), with 
the definition of the generalized Mittag-Leffler function 1361: 

n e  main result, equations (32) and (33), was also derived by Clockle and Nonnenmacher 
[3] via a similar approach involving the Laplace-Mellin technique and by Friedrich [16] 
using a power series ansatz. In the parameter range 0 < p < or < 1, G(r)  obeys at short 
times, f < t (cf (A13)), 

whereas at long times (t >> i) one has asymptotically (cf (A14)) 
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Expressions (32) and (33) also embrace the special cases p = 0 and a = 1. For p = 0 
and arbitrary 0 < a 4 1, one has G ( f )  = EE, ( - ( t / r )u ) ,  a result which was also found 
in [16,18]. Here E, is the stand.ard Mittag-Leffler function E&) = Ea. l (x)  [36]. For 
a = 1, En turns into a simple exponential (cf equation (34) with K = p = 1) and hence 
G ( t )  = E exp(-t/z), this being the exponential decaying response of the standard Maxwell 
model (i.e. fl  = 0 and a = 1). Finally for a = 1 and f l  in the range IO, 1[ the relaxation 
modulus, equation (32), shows the following behaviour at long times, t >> z: 

whereas the short-time behaviour is still given by equation (35). This can be seen from the 
expansion of the H-function for small and large values, equations (AlO) and (A12). Note 
that for CY = 1 the first term of the power series on the right-hand side of equation (A12) 
vanishes due to the occurrence of a pole of the I-’-function; thus the long-time decay is 
governed by the second term. Compared to the long-time decay in the case a -= 1, 
equation (36),  we have here a faster relaxation for t >> t. In our picture of mechanical 
analogues the case CY = 1 corresponds to a simple dashpot. This purely viscous element 
causes a faster decay so that one has a fluid long-time behaviour 1161: when one deforms 
the system continuously (e.g. e ( t )  = UI) the stress o ( f )  remains finite for all times (cf the 
superposition integral, equation(3)). 

Using the power series (AlO) and (A12) the relaxation modulus C(t)  of the fractional 
Maxwell model can be also evaluated numerically. The result is displayed in figure 4 for 
two different sets of parameters together with the exponential decaying response of the 
ordinary Maxwell model. The asymptotic short- and long-time regimes of the fractional 
models show clearly the algebraic patterns given in equations (35) and (36). 

At this stage it is worth mentioning that physical constraints are automatically fulfilled 
by our generalized Maxwell model; this is, of course a direct consequence of our derivation 
of the RCE (26) from mechanical analogues. In equation (26) this is manifested in the fact 
that the order of the fractional derivative on the stress, CY - f l ,  is always less or equal than 
that operating on the strain, CY. This is an important requirement for thermodynamic stability 
€3,161. It is obvious that such conditions are not automatically fulfilled by simply replacing 
integer-order by fractional-order operators. Furthermore, if one now also requires that G(t)  
stays finite for t -+ 0 (as befits a well-defined initial-value problem) we must require that 
p = 0, see equation (35) and [34]. Physically ,3 = 0 corresponds to a simple spring, which 
is able to deform instantaneously (i.e. to perform a stress jump), so that G(0) = E ,  see 
equation (35). 

The complex compliance .!*(U) = I/G*(w) follows from equation (27) 

J*(w) = E-’(ior)-OL + E-’(iwz)”. (38) 
This mirrors the fact that for serially-arranged elements the compliances simply add. Using 
the same steps which led from equation (20) to equation (22) we have 

for all 0 4 fl  4 CY 4 I ,  a result also reported in [I61 (see also the discussion in [3]). 

3.3. The generalized Kelvin-Voigt model 

When one arranges the spring and the dashpot in parallel one arrives at the standard Kelvin- 
Voigt model, shown in figure 5(a). Its generalization with two FES is depicted in figure 5(6). 
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Figure 4. The relaxation modulus of the genedized Maxwell model with the parameters (m. 0) 
chosen as (0.85.0. I), (0.75.0.25) (dashed curve) and the standard case (LO) (dotted curve). 
In all cases we set E = 1 .  

Because of the construction the individual stresses add. Following the procedure used in 
the previous subsection we have as corresponding RCE 

daC(t) d@6(t) a(t)  = Eru- + ET#- 
dta dt# 

where we have introduced~the parameters 5 = ( E l ~ p / E ~ ~ l ) ' / ( ' - f l )  and E = E ~ ( ~ I / T ) ~ .  
By Fourier transforming equation (40) we obtain from equations (1 1) and (15) the complex 
modulus 

G*(w) = E(iwr)' + E(ios)fl (41) 

a result that mirrors the additivity of the moduli in parallel arrangements. Repeating the 
steps from equation (16) to equation (19) we get 

On the other hand, here in the Kelvin-Voigt model, the parallel arrangement causes the 
complex compliance 

(io?)+ 
1 + (iory-fl 

J*(w) = E-' (43) 

to be more involved than in the Maxwell model., For the calculation of the function J ( t )  
one can follow a way analogous to the evaluation of G(t) in the preceding subsection. One 
can start from the real part of J*(o), the storage compliance 

which has to be transformed according to equation (20). Note the structural symmetry to 
G"(co) of the Maxwell model, equation (28). This simplifies the procedure, and using the 
Fourier-Mellin technique as before, we obtain 
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By integration, using equation (Al l )  together with J ( 0 )  = l/G(O) = 0, we obtain 

Here we give on the right-hand side of (46) also the corresponding generalized Mittag- 
Leffler function. The result is valid for all 0 < 6 < 01 4 1. To our best knowledge, 
equation (46) for J ( t )  has not been presented before in the literature on relaxation in 
complex media. From equation (A13) we obtain the short time behaviour, t << t, of J ( t ) :  

whereas for t >> z we obtain asymptotically (cf (A14)) 

We stop to note that these expressions also hold for 01 = 1. One should notice the similarity 
of equations (47) and (48) to the corresponding expressions (35) and (36) of the Maxwell 
model. 

Fiyre 5. The ( U )  ordinary and (b) fractional Kelvin-Voigt element. 

For ,9 = 0 and arbitrary 0 < 01 < 1, J(r )  given by (46) may be expressed in terms of 
the standard Mittag-Leffler function (cf equation (18.1.23) of [36]) 

a result which was already given by Gross [391 (see also 1181). For 01 = 1 one has 
J ( t )  = E-' - E-] exp(-I/%), i.e. the well known exponential behaviour of the standard 
Kelvin-Voigt model. Finally, for 01 = 1 and 0 < 6 < i the result 

is obtained from equation (46). Note that for t + CO, J stays finite only when 6 = 0, i.e. 
when in the Kelvin-Voigt arrangement there is a spring in parallel. 

Here we  note the symmetry of the dynamical response functions, G ( t )  and J ( t ) ,  in 
the two possible arrangements of two FEs, namely in the generalized Maxwell model and 
in the generalized Kelvin-Voigt model. Depending on the sequential (Maxwell) or parallel 
(Kelvin-Voigt) construction one of these response functions is simply a sum of two algebraic 
terms (i.e. J ( t )  in the Maxwell model, equation (39), and G ( t )  in the Kelvin-Voigt model, 
equation (42)). Then the other response function is a Mittag-Lefiler function (i.e. G ( t )  for 
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the Maxwell model, equation (33), and J( t )  for the Kelvin-Voigt model, equation (46)). 
Moreover. in every case one witnesses a crossover between two algebraic regimes: for 
a sum of two algebraic terms this is obvious; in the case of the Mittag-Leffler function 
this follows from its expression through power series (see above and equations (A13) and 
(-414)). 

3.4. The generalized Zener model 

The so-called Zener or standard solid model 125,261 'involves three elements as shown in 
figure 6(a). It consists of a Maxwell model in parallel with a spring. The most general 
fractional version of the Zener model is displayed in figure 6(b) and consists of three m. 
Without loss of generality, we again require 0 < p < CY < 1 and, of course, 0 < y < 1. 
Then the stresses in the left, u ~ ( t ) ,  and right, u ~ ( t ) ,  branches of the model are given by 

and 

In equation (51) we set to = (EIZ~ /E&' / ( " -~ '  and EO = E1(tl/to)m. Both stresses add 
up to the RCE 

Setting now t = to and E = E3(r3/r)P, equation (53) reads 

This RCE was given by Tschoegl 1261 for the special case p = y = 0. It was extended to 
arbitrary 0 < p e 01 (with y = 0) by Friedrich and Braun [5], where also a comparison of 
this model with experimental results for different polymer systems (polymeric glasses and 
gelling systems) can be found. 

(4 
Figure 6. The Zener model (a) and its fractional generalization (b), 

Using equations (11) and (15) the  calculation^ of the complex modulus G*(w) is 
straightforward and results in 

Eo(ior)" + E(iwt)Y + E(iws)Yw-5 
1 + (ior)'-p 

(iwr)@ 
1 + (iwr)u-5 C'(0) = = Eo + E(iwr)". (55) 

In equation (55) the moduli of the Maxwell model and~of a single FE add; this is the direct 
consequence of the parallel arrangement of figure 6(b). 
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We obtain the resulting relaxation modulus from equation (55) by simply adding the 
moduli of the Maxwell model, equation (32). and of the single FE, equation (19), i.e. 

Depending on the parameters up to four time regimes with algebraic behaviours may occur. 
This can be seen by comparing on the right-hand side of equation (56) the generalized 
Maxwell term (and its power-law behaviours, equations (35) and (36)) with the second 
term. For instance, for the case y < p and for ((EoIE)(I'(l - y ) /  r(l - a)))l'('-Y) >> 1, 
we find three time regimes 

t-0 for t << T 

c - ~  for T ,  << t 
for T < t << TI (57) 

where TI = ( (Eo/E)(r ( l  - y)/I'(l - u)))~'('-Y)T. In ,addition to the three regimes of 
equation (57), one has in the case a > y ,3 also a fourth regime G(t)  - P' at very short 
times, t << TZ where TZ = ((E/Eo)(I'(l - ,3)/I'(l - y)))'/(Y-+%. 

Note that for special values of the parameters, G(t)  follows from the results of the single 
FE and of the Maxwell models, as discussed in subsections 3.1 and 3.2. Note especially 
that the case a = 1, p = y = 0 reduces to the exponentially decreasing relaxation function 
of the standard Zener model [261. 

Using the power series (A10) and (A12) we have evaluated numerically G ( t )  for the 
fractional Zener model. The result is shown in figure 7 for three different sets of parameters. 
The three power-law regimes of equation (57) can be seen clearly. 

log GW 

l o g t l r  

Figure 7. The relaxation modulus of the fractional Zener model with the parameters (a, p ,  y )  
chosen as (0.8.0.1.0.08), (0.6.0.05.0.03) (dashed curve) and (0.4.0.08,0.05) (dotted c w e ) .  
In dl cases we set Eo = 1 and E = 0.0001. 

The complex compliance J*(w) = I/G*(o), i.e. 

shows a more involved pattem. Within the framework of the Fourier-Mellin technique we 
are able to express J ( t )  analytically for y = ff or for y = B. We start by presenting the 
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results for the generalized Zener model with y = a: 

(59) 

and with y = p :  

(60) 

In both cases we set A = E / ( E  + E O ) .  Equation (60) was given in [5, IS] for the special 
case y = f i  = 0. Note that in equations (59) and (60) J ( t )  is simply the sum of the 
compliances of the Kelvin-Voigt model (cf (46)) and of the single FE, equation (22). A 
different version of a.fractional Zener model was given in [3]. 

Where the derivation' of equations (59) and (60) is concerned, &e RCE of the Zener 
model has the same form as the RCE of the generalized Poynting-Thomson model which 
we discuss later. This duality is remarkable. Due to the serial structure of the Poynting- 
Thomson arrangement, its creep compliance J ( t )  is readily obtained as the sum of the J ( t )  
of its subunits. The derivation of J ( t )  being simpler for the Poynting-Tnomson model, 
we restrain ourselves from presenting here the details of the more involved Fourier-Mellin 
technique and use in the next section the duality for a simpler derivation of equations (59) 
and (60). 

E 

(3 
Figure 8. The (a) ordinary and (b) fractional Poynting-Thomson model. 

3.5 The generalized Poynting-Thoinson model 

The Poynting-7homson model and its generalization using FES are shown in figures 8(a) 
and (b), respectively. The stress-strain relation of the generalized model obeys 

with 5 = (Elr;/E&/(a-p), Eo = E1~(71/r)' and E = E ~ ( s / s ) ~ .  Due to the serial 
arrangement of the Poynting-Thomson model we obtain immediately its creep compliance 
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- ($)(z) 
a M 
" 

p-1 i c i  

k 

Ĝ (4 

Figure 9. The inverse cosine transform for G ( i )  and its description via a three-sep procedure 
involving the Mellin transform and its inverse. 

as the sum of the compliances of its subunits, a Kelvin-Voigt element (cf (43)) and a FE 
(cf (22)): 

We are able to calculate the relaxation modulus when we restrict ourselves to y = 01 or to 
y = 0. Interestingly, the Poynting-Thomson and the Zener model lead then to the same 
RCES. Thus for y = 1y the RCE of the Poynting-Thomson model, equation (61), takes the 
form 

whereas the RCE of the Zener model, equation (54). for y = 01 reads 

In order to distinguish between the material constants of the two models we have introduced 
in equations (63) and (64) the superscripts PT for Poynting-Thomson and Z for Zener, 
respectively. By comparing the corresponding terms of equations (63) and (64) we find as 
transformation rules 

Equations (65) connect the two models and are valid for y = 01: for y = p one has simply 
to exchange 01 and 6 in (65). Using equations (62) and (65) one recovers equations (59) 
and (60) of the fractional Zener model. 

Duality can now be invoked again to establish the relaxation modulus G(t) in 
the Poynting-Thomson model; one has only to replace the material constants in the 
corresponding function of the fractional Zener model, equation (56). The discussion of 
G(t)  mns along the same lines as in the generalized Zener model, so that we do not repeat 
it here. 
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3.6. Other models 

Similarly to the models discussed above, one can derive the RCE of any arrangement of 
elementary mechanical parts, such as springs, dashpots and FES. From the RCE using 
the behaviour of the Weyl derivative under Fourier transforms, equation (ll), one obtains 
analytically the harmonic response functions G*(w) and J*(o). Their inversion, to obtain 
G(t) and J ( t )  is, however, a hard task, which is not always feasible in the framework 
of the Fourier-Mellin technique. Nevertheless, whenever a system is built as a parallel 
(serial) arrangement of subunits with known relaxation moduli (creep compliances), its 
corresponding response function is the sum of the responses of the subunits. Using such 
sub-blocks a great variety of complicated systems with analytical response functions can be 
constructed. 

4. Conclusion 

In this work we have put forward a method which allows a physically correct generalization 
of viscoelastic models. We arrive at arrangements which obey fractional RCES by replacing 
in the usual mechanical models some of the elastic and viscous elements by fractional ones. 
We also surveyed exactly solvable models and calculated explicitly their response functions. 

The representation of generalized viscoelastic models by fractional analogues also allows 
a deeper insight into the physics behind fractional stress-strain relations; on the other hand 
RCES aid in discovering hidden s y m m e ~ e s  between the models, such as the duality between 
the fractional Zener and Poynting-Thomson models. Using fractional elements one can 
tailor viscoelastic models with given properties, while keeping the number of the parameters 
involved relatively low. 
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Appendix. The Mellin transform technique and Fox H-function 

In many cases the transformations from the harmonic response functions G’(o) and J * ( o )  
to the step responses G(t) and J ( r )  (cf equations (17), (18) and (20)) are not tabulated. 
Here the knowledge of the Mellin transform (cf equation (30)) is of much help. The Mellin 
transform obeys the functional relation [35] 

M[x”f(axP); 7.) = p-’a-(“”)~Pf - (AI) 

with a, p > 0. Equation (Al) allows one to transform certain classes of functions involving 
arbitrary powers of the argument and additional prefactors with power U. Moreover, the 
Fourier cosine and the Mellin transform of a given function f ( x )  are related [35]: 

(z; ”1 

(A21 

A similar relation holds for the Fourier sine transform [35J. Equation (A2) allows one to go 
from the w domain to the Mellin domain; the inverse MelIin transformation then brings one 

112 
2 MGWLX); 01; 21 = r(z) COS -MW); 1 - 21. 
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back to the time domain. A three-step transformation, as depicted in figure 9 is sometimes 
a very convenient way to perform the inverse cosine (or sine) transform 3,' (F;'). 

We turn now to the evaluation of the inverse Mellin transform 

The transform M-I is intimately related to the so-called H-functions, as given by Fox in 
terms of a modified Mellin-Barnes integral [38]. The notation and the definition of the 
H-functions are 

with the integral density 

(For constraints on the occurring parameters see e.g. [3,38]). Note that from equation (A4) 
the inverse Mellin transform of a function containing products and quotients of Gamma 
functions is expressible in the time domain through H-functions. 

We l i s t  now some very convenient properties of Fox H-functions [38]. 
Property I. The H-function is bymmetric with respect to the permutations of 

( U I , A I ) , . . . , ( U ~ . A A  of (u,+~,A,+i),...,(u~.A~). of (bi,Bi), ..., (bm,Bm) and of 
(6m+1,Bm+1),...,(6q,Bq). 

H E  [ x  I (bi. Bi), (bz, B d , .  .., (bq-l. &I) ,  ( U I ,  A I )  

= HT!& [x  1 (61.51)~....(~~-1,~~-1) 

Property 2. For n 2 1 and q > m one has 

(A6) 

1 (al. A I ) ,  (UZ, A d ,  . . . , (a?. Ap) 

( ~ 2 ,  A d ,  . . ., (up, Ap) 

Property 3. 

Properzy 4. For k z 0 

Property 5. 

An H-function may be written in terms of an alternating power series [38], a fact which 
is convenient for computations. As an example, for H:: this results in 

from which one finds the following rule for the differentiation of H::: 
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Now t h e  series in (A10) does not converge fast for large values of x .  Thus it is important 
to have property 3 at hand, which allows one to rewrite H,'; as a function of l / x ,  from 
which a, series in l / x  follows, by help of (AIO). We have 

This allows the numerical evaluation of H:: for large x-values. 

and (AI.2): 
The behaviour for small and large x follows immediately from the power series (AIO) 

for x << 1 and 

for x >> 1. 
Throughout this paper we use the symbol Z to mean ,'asymptotically equivalent'. 
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